3.1.22 \(\int x (d-c^2 d x^2)^3 (a+b \text {arccosh}(c x)) \, dx\) [22]

3.1.22.1 Optimal result
3.1.22.2 Mathematica [A] (warning: unable to verify)
3.1.22.3 Rubi [A] (verified)
3.1.22.4 Maple [A] (verified)
3.1.22.5 Fricas [A] (verification not implemented)
3.1.22.6 Sympy [F]
3.1.22.7 Maxima [B] (verification not implemented)
3.1.22.8 Giac [F(-2)]
3.1.22.9 Mupad [F(-1)]

3.1.22.1 Optimal result

Integrand size = 23, antiderivative size = 166 \[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=-\frac {35 b d^3 x \sqrt {-1+c x} \sqrt {1+c x}}{1024 c}+\frac {35 b d^3 x (-1+c x)^{3/2} (1+c x)^{3/2}}{1536 c}-\frac {7 b d^3 x (-1+c x)^{5/2} (1+c x)^{5/2}}{384 c}+\frac {b d^3 x (-1+c x)^{7/2} (1+c x)^{7/2}}{64 c}+\frac {35 b d^3 \text {arccosh}(c x)}{1024 c^2}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2} \]

output
35/1536*b*d^3*x*(c*x-1)^(3/2)*(c*x+1)^(3/2)/c-7/384*b*d^3*x*(c*x-1)^(5/2)* 
(c*x+1)^(5/2)/c+1/64*b*d^3*x*(c*x-1)^(7/2)*(c*x+1)^(7/2)/c+35/1024*b*d^3*a 
rccosh(c*x)/c^2-1/8*d^3*(-c^2*x^2+1)^4*(a+b*arccosh(c*x))/c^2-35/1024*b*d^ 
3*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c
 
3.1.22.2 Mathematica [A] (warning: unable to verify)

Time = 0.24 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.90 \[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=-\frac {d^3 \left (c x \left (b \sqrt {-1+c x} \sqrt {1+c x} \left (279-326 c^2 x^2+200 c^4 x^4-48 c^6 x^6\right )+384 a c x \left (-4+6 c^2 x^2-4 c^4 x^4+c^6 x^6\right )\right )+384 b c^2 x^2 \left (-4+6 c^2 x^2-4 c^4 x^4+c^6 x^6\right ) \text {arccosh}(c x)+558 b \text {arctanh}\left (\sqrt {\frac {-1+c x}{1+c x}}\right )\right )}{3072 c^2} \]

input
Integrate[x*(d - c^2*d*x^2)^3*(a + b*ArcCosh[c*x]),x]
 
output
-1/3072*(d^3*(c*x*(b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(279 - 326*c^2*x^2 + 200 
*c^4*x^4 - 48*c^6*x^6) + 384*a*c*x*(-4 + 6*c^2*x^2 - 4*c^4*x^4 + c^6*x^6)) 
 + 384*b*c^2*x^2*(-4 + 6*c^2*x^2 - 4*c^4*x^4 + c^6*x^6)*ArcCosh[c*x] + 558 
*b*ArcTanh[Sqrt[(-1 + c*x)/(1 + c*x)]]))/c^2
 
3.1.22.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {6329, 40, 40, 40, 40, 43}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx\)

\(\Big \downarrow \) 6329

\(\displaystyle \frac {b d^3 \int (c x-1)^{7/2} (c x+1)^{7/2}dx}{8 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2}\)

\(\Big \downarrow \) 40

\(\displaystyle \frac {b d^3 \left (\frac {1}{8} x (c x-1)^{7/2} (c x+1)^{7/2}-\frac {7}{8} \int (c x-1)^{5/2} (c x+1)^{5/2}dx\right )}{8 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2}\)

\(\Big \downarrow \) 40

\(\displaystyle \frac {b d^3 \left (\frac {1}{8} x (c x-1)^{7/2} (c x+1)^{7/2}-\frac {7}{8} \left (\frac {1}{6} x (c x-1)^{5/2} (c x+1)^{5/2}-\frac {5}{6} \int (c x-1)^{3/2} (c x+1)^{3/2}dx\right )\right )}{8 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2}\)

\(\Big \downarrow \) 40

\(\displaystyle \frac {b d^3 \left (\frac {1}{8} x (c x-1)^{7/2} (c x+1)^{7/2}-\frac {7}{8} \left (\frac {1}{6} x (c x-1)^{5/2} (c x+1)^{5/2}-\frac {5}{6} \left (\frac {1}{4} x (c x-1)^{3/2} (c x+1)^{3/2}-\frac {3}{4} \int \sqrt {c x-1} \sqrt {c x+1}dx\right )\right )\right )}{8 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2}\)

\(\Big \downarrow \) 40

\(\displaystyle \frac {b d^3 \left (\frac {1}{8} x (c x-1)^{7/2} (c x+1)^{7/2}-\frac {7}{8} \left (\frac {1}{6} x (c x-1)^{5/2} (c x+1)^{5/2}-\frac {5}{6} \left (\frac {1}{4} x (c x-1)^{3/2} (c x+1)^{3/2}-\frac {3}{4} \left (\frac {1}{2} x \sqrt {c x-1} \sqrt {c x+1}-\frac {1}{2} \int \frac {1}{\sqrt {c x-1} \sqrt {c x+1}}dx\right )\right )\right )\right )}{8 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2}\)

\(\Big \downarrow \) 43

\(\displaystyle \frac {b d^3 \left (\frac {1}{8} x (c x-1)^{7/2} (c x+1)^{7/2}-\frac {7}{8} \left (\frac {1}{6} x (c x-1)^{5/2} (c x+1)^{5/2}-\frac {5}{6} \left (\frac {1}{4} x (c x-1)^{3/2} (c x+1)^{3/2}-\frac {3}{4} \left (\frac {1}{2} x \sqrt {c x-1} \sqrt {c x+1}-\frac {\text {arccosh}(c x)}{2 c}\right )\right )\right )\right )}{8 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 (a+b \text {arccosh}(c x))}{8 c^2}\)

input
Int[x*(d - c^2*d*x^2)^3*(a + b*ArcCosh[c*x]),x]
 
output
-1/8*(d^3*(1 - c^2*x^2)^4*(a + b*ArcCosh[c*x]))/c^2 + (b*d^3*((x*(-1 + c*x 
)^(7/2)*(1 + c*x)^(7/2))/8 - (7*((x*(-1 + c*x)^(5/2)*(1 + c*x)^(5/2))/6 - 
(5*((x*(-1 + c*x)^(3/2)*(1 + c*x)^(3/2))/4 - (3*((x*Sqrt[-1 + c*x]*Sqrt[1 
+ c*x])/2 - ArcCosh[c*x]/(2*c)))/4))/6))/8))/(8*c)
 

3.1.22.3.1 Defintions of rubi rules used

rule 40
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[x* 
(a + b*x)^m*((c + d*x)^m/(2*m + 1)), x] + Simp[2*a*c*(m/(2*m + 1))   Int[(a 
 + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[ 
b*c + a*d, 0] && IGtQ[m + 1/2, 0]
 

rule 43
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
ArcCosh[b*(x/a)]/(b*Sqrt[d/b]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a 
*d, 0] && GtQ[a, 0] && GtQ[d/b, 0]
 

rule 6329
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p 
+ 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + 
 c*x)^p)]   Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x 
])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && 
GtQ[n, 0] && NeQ[p, -1]
 
3.1.22.4 Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.22

method result size
derivativedivides \(\frac {-\frac {d^{3} a \left (c^{2} x^{2}-1\right )^{4}}{8}-d^{3} b \left (\frac {\operatorname {arccosh}\left (c x \right ) c^{8} x^{8}}{8}-\frac {\operatorname {arccosh}\left (c x \right ) c^{6} x^{6}}{2}+\frac {3 c^{4} x^{4} \operatorname {arccosh}\left (c x \right )}{4}-\frac {c^{2} x^{2} \operatorname {arccosh}\left (c x \right )}{2}+\frac {\operatorname {arccosh}\left (c x \right )}{8}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (48 c^{7} x^{7} \sqrt {c^{2} x^{2}-1}-200 c^{5} x^{5} \sqrt {c^{2} x^{2}-1}+326 \sqrt {c^{2} x^{2}-1}\, c^{3} x^{3}-279 c x \sqrt {c^{2} x^{2}-1}+105 \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )\right )}{3072 \sqrt {c^{2} x^{2}-1}}\right )}{c^{2}}\) \(202\)
default \(\frac {-\frac {d^{3} a \left (c^{2} x^{2}-1\right )^{4}}{8}-d^{3} b \left (\frac {\operatorname {arccosh}\left (c x \right ) c^{8} x^{8}}{8}-\frac {\operatorname {arccosh}\left (c x \right ) c^{6} x^{6}}{2}+\frac {3 c^{4} x^{4} \operatorname {arccosh}\left (c x \right )}{4}-\frac {c^{2} x^{2} \operatorname {arccosh}\left (c x \right )}{2}+\frac {\operatorname {arccosh}\left (c x \right )}{8}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (48 c^{7} x^{7} \sqrt {c^{2} x^{2}-1}-200 c^{5} x^{5} \sqrt {c^{2} x^{2}-1}+326 \sqrt {c^{2} x^{2}-1}\, c^{3} x^{3}-279 c x \sqrt {c^{2} x^{2}-1}+105 \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )\right )}{3072 \sqrt {c^{2} x^{2}-1}}\right )}{c^{2}}\) \(202\)
parts \(-\frac {d^{3} a \left (c^{2} x^{2}-1\right )^{4}}{8 c^{2}}-\frac {d^{3} b \left (\frac {\operatorname {arccosh}\left (c x \right ) c^{8} x^{8}}{8}-\frac {\operatorname {arccosh}\left (c x \right ) c^{6} x^{6}}{2}+\frac {3 c^{4} x^{4} \operatorname {arccosh}\left (c x \right )}{4}-\frac {c^{2} x^{2} \operatorname {arccosh}\left (c x \right )}{2}+\frac {\operatorname {arccosh}\left (c x \right )}{8}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (48 c^{7} x^{7} \sqrt {c^{2} x^{2}-1}-200 c^{5} x^{5} \sqrt {c^{2} x^{2}-1}+326 \sqrt {c^{2} x^{2}-1}\, c^{3} x^{3}-279 c x \sqrt {c^{2} x^{2}-1}+105 \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )\right )}{3072 \sqrt {c^{2} x^{2}-1}}\right )}{c^{2}}\) \(204\)

input
int(x*(-c^2*d*x^2+d)^3*(a+b*arccosh(c*x)),x,method=_RETURNVERBOSE)
 
output
1/c^2*(-1/8*d^3*a*(c^2*x^2-1)^4-d^3*b*(1/8*arccosh(c*x)*c^8*x^8-1/2*arccos 
h(c*x)*c^6*x^6+3/4*c^4*x^4*arccosh(c*x)-1/2*c^2*x^2*arccosh(c*x)+1/8*arcco 
sh(c*x)-1/3072*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(48*c^7*x^7*(c^2*x^2-1)^(1/2)-2 
00*c^5*x^5*(c^2*x^2-1)^(1/2)+326*(c^2*x^2-1)^(1/2)*c^3*x^3-279*c*x*(c^2*x^ 
2-1)^(1/2)+105*ln(c*x+(c^2*x^2-1)^(1/2)))/(c^2*x^2-1)^(1/2)))
 
3.1.22.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.11 \[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=-\frac {384 \, a c^{8} d^{3} x^{8} - 1536 \, a c^{6} d^{3} x^{6} + 2304 \, a c^{4} d^{3} x^{4} - 1536 \, a c^{2} d^{3} x^{2} + 3 \, {\left (128 \, b c^{8} d^{3} x^{8} - 512 \, b c^{6} d^{3} x^{6} + 768 \, b c^{4} d^{3} x^{4} - 512 \, b c^{2} d^{3} x^{2} + 93 \, b d^{3}\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (48 \, b c^{7} d^{3} x^{7} - 200 \, b c^{5} d^{3} x^{5} + 326 \, b c^{3} d^{3} x^{3} - 279 \, b c d^{3} x\right )} \sqrt {c^{2} x^{2} - 1}}{3072 \, c^{2}} \]

input
integrate(x*(-c^2*d*x^2+d)^3*(a+b*arccosh(c*x)),x, algorithm="fricas")
 
output
-1/3072*(384*a*c^8*d^3*x^8 - 1536*a*c^6*d^3*x^6 + 2304*a*c^4*d^3*x^4 - 153 
6*a*c^2*d^3*x^2 + 3*(128*b*c^8*d^3*x^8 - 512*b*c^6*d^3*x^6 + 768*b*c^4*d^3 
*x^4 - 512*b*c^2*d^3*x^2 + 93*b*d^3)*log(c*x + sqrt(c^2*x^2 - 1)) - (48*b* 
c^7*d^3*x^7 - 200*b*c^5*d^3*x^5 + 326*b*c^3*d^3*x^3 - 279*b*c*d^3*x)*sqrt( 
c^2*x^2 - 1))/c^2
 
3.1.22.6 Sympy [F]

\[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=- d^{3} \left (\int \left (- a x\right )\, dx + \int 3 a c^{2} x^{3}\, dx + \int \left (- 3 a c^{4} x^{5}\right )\, dx + \int a c^{6} x^{7}\, dx + \int \left (- b x \operatorname {acosh}{\left (c x \right )}\right )\, dx + \int 3 b c^{2} x^{3} \operatorname {acosh}{\left (c x \right )}\, dx + \int \left (- 3 b c^{4} x^{5} \operatorname {acosh}{\left (c x \right )}\right )\, dx + \int b c^{6} x^{7} \operatorname {acosh}{\left (c x \right )}\, dx\right ) \]

input
integrate(x*(-c**2*d*x**2+d)**3*(a+b*acosh(c*x)),x)
 
output
-d**3*(Integral(-a*x, x) + Integral(3*a*c**2*x**3, x) + Integral(-3*a*c**4 
*x**5, x) + Integral(a*c**6*x**7, x) + Integral(-b*x*acosh(c*x), x) + Inte 
gral(3*b*c**2*x**3*acosh(c*x), x) + Integral(-3*b*c**4*x**5*acosh(c*x), x) 
 + Integral(b*c**6*x**7*acosh(c*x), x))
 
3.1.22.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 423 vs. \(2 (137) = 274\).

Time = 0.23 (sec) , antiderivative size = 423, normalized size of antiderivative = 2.55 \[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=-\frac {1}{8} \, a c^{6} d^{3} x^{8} + \frac {1}{2} \, a c^{4} d^{3} x^{6} - \frac {1}{3072} \, {\left (384 \, x^{8} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {48 \, \sqrt {c^{2} x^{2} - 1} x^{7}}{c^{2}} + \frac {56 \, \sqrt {c^{2} x^{2} - 1} x^{5}}{c^{4}} + \frac {70 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{6}} + \frac {105 \, \sqrt {c^{2} x^{2} - 1} x}{c^{8}} + \frac {105 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{9}}\right )} c\right )} b c^{6} d^{3} - \frac {3}{4} \, a c^{2} d^{3} x^{4} + \frac {1}{96} \, {\left (48 \, x^{6} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {8 \, \sqrt {c^{2} x^{2} - 1} x^{5}}{c^{2}} + \frac {10 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{4}} + \frac {15 \, \sqrt {c^{2} x^{2} - 1} x}{c^{6}} + \frac {15 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{7}}\right )} c\right )} b c^{4} d^{3} - \frac {3}{32} \, {\left (8 \, x^{4} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {2 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{2}} + \frac {3 \, \sqrt {c^{2} x^{2} - 1} x}{c^{4}} + \frac {3 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{5}}\right )} c\right )} b c^{2} d^{3} + \frac {1}{2} \, a d^{3} x^{2} + \frac {1}{4} \, {\left (2 \, x^{2} \operatorname {arcosh}\left (c x\right ) - c {\left (\frac {\sqrt {c^{2} x^{2} - 1} x}{c^{2}} + \frac {\log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{3}}\right )}\right )} b d^{3} \]

input
integrate(x*(-c^2*d*x^2+d)^3*(a+b*arccosh(c*x)),x, algorithm="maxima")
 
output
-1/8*a*c^6*d^3*x^8 + 1/2*a*c^4*d^3*x^6 - 1/3072*(384*x^8*arccosh(c*x) - (4 
8*sqrt(c^2*x^2 - 1)*x^7/c^2 + 56*sqrt(c^2*x^2 - 1)*x^5/c^4 + 70*sqrt(c^2*x 
^2 - 1)*x^3/c^6 + 105*sqrt(c^2*x^2 - 1)*x/c^8 + 105*log(2*c^2*x + 2*sqrt(c 
^2*x^2 - 1)*c)/c^9)*c)*b*c^6*d^3 - 3/4*a*c^2*d^3*x^4 + 1/96*(48*x^6*arccos 
h(c*x) - (8*sqrt(c^2*x^2 - 1)*x^5/c^2 + 10*sqrt(c^2*x^2 - 1)*x^3/c^4 + 15* 
sqrt(c^2*x^2 - 1)*x/c^6 + 15*log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^7)*c)* 
b*c^4*d^3 - 3/32*(8*x^4*arccosh(c*x) - (2*sqrt(c^2*x^2 - 1)*x^3/c^2 + 3*sq 
rt(c^2*x^2 - 1)*x/c^4 + 3*log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^5)*c)*b*c 
^2*d^3 + 1/2*a*d^3*x^2 + 1/4*(2*x^2*arccosh(c*x) - c*(sqrt(c^2*x^2 - 1)*x/ 
c^2 + log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^3))*b*d^3
 
3.1.22.8 Giac [F(-2)]

Exception generated. \[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=\text {Exception raised: TypeError} \]

input
integrate(x*(-c^2*d*x^2+d)^3*(a+b*arccosh(c*x)),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.1.22.9 Mupad [F(-1)]

Timed out. \[ \int x \left (d-c^2 d x^2\right )^3 (a+b \text {arccosh}(c x)) \, dx=\int x\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^3 \,d x \]

input
int(x*(a + b*acosh(c*x))*(d - c^2*d*x^2)^3,x)
 
output
int(x*(a + b*acosh(c*x))*(d - c^2*d*x^2)^3, x)